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The symmetry-adapted method of fragmentation is used to derive for the first 
time the number of Kekuld structures for a class of pericondensed coronoids. The 
systems are regular hexagonal (D6h) and consist of circumkekulene and its 
homologs. 
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Die Anzahl mOglicher Kekul6-Strukturen f~r Circumkekulen und seine Homologen 

Es wurde die symmetrieadaptierte Fragmentierungsmethode benutzt, um 
erstmals die Anzahl m6glicher Kekuld-Strukturen ftir eine Klasse von peri- 
kondensierten Coronoiden abzuleiten. Die untersuchten Systeme sind regelm~iBig 
hexagonal (D6h) und stellen Circumkekulen und seine Homologen dar. 

Introduction 

A coronoid is defined as a planar system of identical hexagons with a 
hole of at least two hexagons. The systems have obvious counterparts in 
polycyclic aromatic hydrocarbons. As a remarkable achievement one of 
these molecules, viz. kekulene C48H24 , has been synthesized [1, 2]. Very 
recently the synthesis of  a second member, C40H20 , has been reported [-3]. 
Also in other contexts a great interest in coronoid systems and the 
corresponding hydrocarbons is noted during the last years; cf., e.g. the 
theoretical work of Vogler [-4] and the graph enumerations [-5, 6]. In the 
present work the numbers of  Kekuld structures (K) for some coronoid 
systems are considered. 

We wish to demonstrate the virtue of the Kenumerat ion method due to 
Randid [-7] and referred to as the method of  fragmentation. This method is 
the basis of  some enumeration techniques described and employed 
previously [-8-10]. In the present work the very useful method of 
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fragmentation is exploited in a different direction. It is modified into the 
so-called symmetry-adapted method of fragmentation, which has been 
applied to regular hexagonal [11] and regular trigonal [12] benzenoids 
previously. Here we show an advanced application of this method to a 
class of regular hexagonal coronoids. The result is the first combinatorial 
formula of the number of Kekuld structures for a class of pericondensed 
coronoids. 

Results and Discussion 

Two Classes of  Regular Hexagonal Coronoids 

Figure 1 shows two classes of regular hexagonal coronoids: C1 starts 
with kekulene and consists of catacondensed systems; C2 starts with 
circumkekulene and consists of pericondensed systems. Catacondensed 
and pericondensed systems (coronoids as well as benzenoids) are defined 
by the absence and presence of a vertex belonging to three hexagons, 
respectively. 

For the former class (C1) the enumeration problem for Kekuld 
structures has been solved previously [-13, 141. The combinatorial formula 
in terms of the parameter e defined in Fig. 1 reads 

K{CI(C0} = (~2 _}_ 2C~ + 2)2(~ 2 + 2C~ + 5) (1) 

a + 2  

C2 

@ 
c~+2 

Fig. 1. Two classes of regular hexagonal coronoids. Knumbers are inscribed. They 
were determined by means of a computer program 
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The corresponding combinatorial formula for the latter class (C2) is 
the main result of  the present work. It reads 

K{C2(o0} : 1(o~2 -l- 4)(0( 2 q- 2c~ + 5)(c( 8 + 40( 7 + 22~ 6 

+ 52~ 5 + 129o~ 4 + 176c~ 3 + 208o~ 2 + 128c~ + 64) (2) 

Application of the Symmetry-Adapted Method of Fragmentation 

Six symmetrically equivalent edges were selected as those of the bay 
regions inside the corona hole; they are marked by arrows on the bottom- 
right drawing of Fig. 1. The possible patterns of  single and double bonds 
for these edges are the same as those of the central hexagon in a regular 
hexagonal benzenoid [-11, 12]. In both cases one has the only restriction 
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Fig. 2. Patterns of single and double bonds for selected edges with multiplicities 
inscribed. Formulas for the numbers of Kekul~ structures of the corresponding 

fragments (see Fig. 3) 
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Fig. 3. Five fragments of a coronoid belonging to the class C2 

that two nearest neighbours of  the edges never can both be double. These 
patterns, along with the multiplicities associated with them are depicted in 
Fig. 2. Figure 3 shows the five fragments obtained f rom the different 
patterns. Their nfimbers o f  K e k u l d  structures are designated kb • •., ks. For 
each fragment this number  was derived as a function (polynomial) of  c~. 
The results are collected in Fig. 2. 

Now the final formula (2) is obtained as 

K = k 1 + 2 k 2 + 3 k 3 -t- 6 k 4 -Jr 6 k 5 (3) 
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Derivation of the Intermediate Results 

In order to derive the formulas of Fig. 2 the symmetry-adapted method 
of fragmentation may be used in every case, but it must be adapted to 
different symmetries. 

For the first fragment, for instance, which has the regular hexagonal 
symmetry of D6h , a scheme with five fragments was deduced similarly to 
the one of Figs. 2 and 3. The individual numbers of KekulO structures, viz. 

tel =~2~6(~+ 1)6, /¢2=~6, tC3=0, t¢4=~6(~-'}- 1)2 

and ~:5 = ~6c~6( ~ + 1) 4, 

lead to the formula for kl in Fig. 2. 
One more example will be treated and in some more detail. The third 

fragment of Fig. 3 has dihedral (D2h) symmetry. Here the edges of the six 
outer corners were selected as the basis of the symmetry-adapted method 
of fragmentation. One has the restriction that two nearest neighbours of 
these edges can never both be single. One comes out with eight patterns of 
bondings as depicted in Fig. 4. They are in fact the inverted patterns of 
those of a central hexagon in a dihedral benzenoid 1-12]. The procedure 
leads to the eight fragments depicted in Fig. 5. The formulas of their 
numbers of KekulO structures are denoted Xl, . . . ,  K8 and given in Fig. 4. 
The developments are considerably simplified by the fact that four of these 

It 1 II l[ 2 I ! 1 I II 2 II 

~i = 0 <2 = a2 <3 = ~ a (C~+I)- K 4 = 0 

. /  % i % / /  % ~ % 

II 2 [1 II 4 I II 2 I ~1 4 

I = i 2(a+i)4 <8 = 0 I<'5 = 0 K6 = ~ c~2(c~+i)2 <7 -$ c~ 

Fig. 4. Patterns of single and double bonds for selected edges with multiplicities 
inscribed. Formulas for the numbers of Kekuld structures of the corresponding 

fragments (see Fig. 5) 
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c~ 

Fig. 5. Eight fragments of the third coronoid of Fig. 3 

fragments  are n o n - K e k u l k a n  (xl =/£4 = /£5 = t¢8 = 0 ) .  T h e  appropr ia te  
formula  o f  Fig. 2 is obtained as 

k 3 = ~c 1 + 2/£2 -t-/£3 "q- 2 K 4 -I-- 2 Ks + 4 I% -I-- 2/£7 -1-/£8 

= 2/¢2 --I- 1¢ 3 + 4 ~:6 + 2 x7 (4) 

Conclusion 

The formula  for coronoids  o f  the class C 2 (Fig. 1) was derived by an 
advanced applicat ion o f  the symmetry-adapted  method  of  fragmentat ion.  
The formula  is a polynomial  (2) o f  12th degree in the parameter  ~. True 
coronoid  systems occur for  ~ > 1. The K n u m b e r s  for ~ = 2 and ~ = 3 are 
given in Fig. 1. It  is noted that  the formula  (2) also reproduces the well- 
k n o w n  number  K = 980 for  c i rcumcoronene [15] when ~ --- 1. 
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